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The method of discrete vortices is widely used for solving problems in hydrodynamics, 
especially in the theory of wings. The method is based on replacing a continuous vortex 
sheet, modeling the surface of the contact discontinuity (wing), by its discrete analog. 
The condition that the liquid cannot flow through the wing is satisfied at a finite number 
of control points. As a result the starting integral equation, corresponding to the bound- 
ary-value problem at hand, reduces to a system of linear algebraic equations for the intens- 
ity of the discrete vortices. 

The carryingvortex sheet is usually uniformly divided into elements, each of which is 
replaced by one discrete vortex, and the control points are placed midway between the vor- 
tices. This computational scheme ensures that the solution converges for the inner part of 
the carrying vortex sheet [i, 2], while near its boundary an unavoidable error can arise 
[2, 3]. 

In [3, 4] it is proposed that control points be chosen taking into account the local 
characteristics of the carrying vortex sheet. The points at which the system of discrete 
vortices under study induces the same velocities as the starting vortex sheet are chosen as 
the control points. This choice of control points ensures that the approximate solution 
converges to the exact solution in the entire region, including s boundary of the wing 
[5]. The results in [3, 4] were obtained by dividing the vortex sheet into equal elements. 
In many problems, however,'such a separation cannot be performed in principle. Thus in prob- 
lems of stationary detached flow around a profile the velocity of shedding of free vortices 
from the front and back edges will in the general case be different. This results in the 
fact that over a chosen short time interval unequal elements of the vortex trails are shed 
from the edges of the profile. An analogous situation can also occur in the problems of 
detached flow around a wing with a finite span. For this reason it is necessary to deter- 
mine the positions of the control points near the boundaries of the wing taking into account 
the different dimensions of the elements of the vortex sheet on the wing and in the trail. 

We shall solve this problem for a thin profile in a stationary flow of an ideal incom- 
pressible fluid. In the general case vortex trails, owing to the change in the circulation 
of the velocity around the profile with time, will be shed from one or both edges of the pro- 
file. The problem of flow around the profile is usually formulated as a nonlinear initial- 
and boundary-value problem, which is solved by stepwise linearization for closely spaced 
times [i, 3, 6]. Let the corresponding linear boundary-value problems be solved by the 
method of discrete vortices with elements of the vortex sheet of the same length on the pro- 
file, while the elements of the vortex trails, forming over a time At, adjacent to the edges 
have different lengths. According to the method of discrete vortices, all elements of the 
vortex sheet on the profile and in the trails are occupied by discrete vortices, placed at 
equal distances on the profile and at the center of the elements in the trails, while the 
condition that the fluid not flow through the profile is satisfied at given control points. 
To determine the positions of the control points we shall employ, following [3, 4], the 
condition that in them the velocities induced by the discrete vortices and the starting 
vortex sheel be equal; this condition is applied for somesmall fixed regions on the profile 
and in the vicinity of the edges. Then, for the interior regions on the profile, the con- 
trol points are placed midway between the vortices, and near the edges their position depends 
on the ratio of the lengths of the elements of the vertex sheet on the profile and in the 
trail. 
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We shall study the main details of the algorithm for calculating the control points in 
the vicinity of the back edge of the profile. Let us assume that here the vortex sheet is 
essentially a straight line. We introduce a Cartesian coordinate system oxy with origin in 
the back edge of the profile and we orient the x axis along the vortex trail. We segregate 
on the x axis the segment of the vortex sheet [-E, +e] in a small neighborhood of the edge. 
We divide the left segment [-E, 0], corresponding to the profile, into N I elements of length 
A l = e/NI, and the right segment [0, +e], corresponding to the trail, into N 2 elements of 
lengths A= = ~/N 2. Let the spacing of discrete vortices on the profile be equal to BiA1 and 
let the control points be placed at a distance ~l(1)A1, ~2(I)AI .... from the front edge of 
each element. As regards the discrete vortices, modeling the vortex trail, they are located 
at a distance p2A2 from the front edges of the elements (Fig. i). Then the coordinates of 
the discrete vortices Xm (I) on the profile and Xp (2) in the trail are given by 

X~ ) = A I ( -  m + . 0 ,  ~ )  = A~ ( p -  1 + ~) ,  m = ~ , . .  ,N~, 

p = I . . . . .  N2, 

while the coordinates of the control points are ~0h = .., 

Let us assume that in the interval [-s, +~] the intensity of the vortex sheet ~(x, t) is 
a continuous bounded function of the variable x and t, and the interval itself is so short 
that to a first approximation y(x, t) = ~(0, t) for all x e [-s, +s]. Requiring that the 
velocities induced by the continuous vortex sheet on the segment [-s, +e] and the system of 
discrete vortices be equal at the control points we arrive at a transcendental equation for 
determining the coefficients ~k(1): 

= )=~ (1) 
(6 = A~/A1, N2 = N1/8). 

Equation (I) was solved in the limit N I + ~. The coefficients Vk (z) obtained in this 
manner correspond to the limiting case of unbounded growth of the elements on the profile. 
The position of the control points on each element of the profile thereby turns out to be 
independent of the number of these elements (this also happens in the usual computational 
scheme, when the control points are chosen strictly between the vortices). The calculation 
was performed for ~2 = 0.5 (the vortices in the trail are located at the center of each 
element) and Bl = 0, 0.25, and 0.5 in a wide range of values of the parameter 6. The re- 
sults showed that the difference in the lengths of the elements of the vortex sheet on the 
profile and in the trail is essentially manifested only in the change in the position of the 
control point, determined by the coefficient vi(i), closest to the back edge. All other 
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control points are located practically midway between the discrete vortices for all A2/A I. 
The dependence of ~l(l) on A2/A l is presented in Fig. 2 (for 0 < A2/A l 5 1 (a) and for 
1 5 A2/A1 < ~ (b)). For sufficiently large A2/A I vl(l) becomes greater than unity, which 
means that the control point determined by Eq. (i) lies outside the profile. For this reason, 
in practical calculations, a limit must be imposed on the time step At, so that A2/A l does 
not reach its critical values. For example, for ~i = 0.5, when the vortices on the profile 
are chosen at the center of the elements, the condition ~l(I) S i leads to the requirement 
A2 ! At; for DI = 0.25 (the vortices are located at a distance equal to one-fourth the dis- 
tance from the center of the edge of each element) the condition A 2 < 2.5 At, must be satis- 
fied and for BI = 0 (the vortices are located at the start of the elements) A 2 < 4.3 A I. 

As regards the calculation of the control points near the front edge in the detached 
flow, all results obtained remain valid with no changes, if the position of the discrete 
vortices and the control points on the profile (the coefficients Bl and ~i(i), v2(I) .... ) 

are measured from the back edge of the corresponding elements. 

As an illustration of the results obtained we shall calculate the nonstationary flow 
around a plate undergoing vertical harmonic oscillations with a circular frequency m and 
amplitude Y0 in the flow of an ideal incompressible fluid. For simplicity we shall confine 

our attention to the linear formulation of the problem, according to which the vortex trail 
is shed rectilinearly from the back edge and the vortices in the trail move with a constant 
velocity V equal to the velocity of the main (undisturbed) flow. We shall assume that the 
plate starts to oscillate at the time t = 0 with some fixed initial data. The algorithm for 
solving this problem by the method of discrete vortices is well known (see, for example, 
[ 1 ,  6 1 ) .  

We divide the chord of the plate b into n elements of length A l = b/n, each of which we 
replace by a discrete vortex Fl, ..., Fn, located at the center of the element (Dl = 0.5), 
and we replace the vortex trail by a system of free vortices located at the center of elements 
of length A 2 = VAt. Setting At = T/N (T is the period of oscillations of the plate (T = 2~/m), 
N is the number of computed time steps in the period T), we obtain the expression 

=~-~AI ' ,  ( 2 )  

w h i c h  r e l a t e s  t h e  l e n g t h  o f  t h e  e l e m e n t s  A 1 and  A 2. H e r e  k i s  S t r o u h a l ' s  number  (k  = ~ b / 2 V ) .  

We s h a l l  f i r s t  p e r f o r m  t h e  c a l c u l a t i o n  by t h e  s t a n d a r d  c o m p u t a t i o n a l  s cheme  o f  t h e  m e t h o d  
o f  d i s c r e t e  v o r t i c e s ,  when t h e  c o n t r o l  p o i n t s  l i e  s t r i c t l y  b e t w e e n  t h e  v o r t i c e s .  I n  t h e  c a s e  
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at hand (~i = 0.5), the control points lie on the back edges of the elements on the plate. 

We note that in the algorithms for solving problems of nonstationary flow around pro- 
files by the method of discrete vortices it is recommended that the time step At be chosen 
so that the element of the vortex trail A 2 formed over a time At be equal to the element A I 
on the profile [6]. This is because the discrete model of a vortex sheet permits calculat- 
ing correctly the velocity at the back edge of the profile, determined for a continuous 
vortex sheet by a singular integral, only for A 2 = A I. For A2/A l ~ 1 there arises an error, 
and this error increases as the deviation of A2/A I from unity increases. 

We shall estimate the error in the calculation peformed by the standard scheme of the 
method of discrete vortices, arising with A 2 ~ Al, for the problem of nonstationary flow 
around a plate. Let n = 20, k = i, Y0 = 0.i b, and let the number of steps N in the period 
T vary so that in accordance with the formula (2) the parameter 6 = 0.2, 0.5, and i. 

Figure 3 shows the results of the calculation of the intensity of the vortex sheet 
~(x, t) along the chord of the oscillating plate at the times t/T = i, 1.25, 1.5, and 1.75 
for A2/A l = 1 and 0.2. They show that the computational error arising owing to the differ- 
ences in the lengths of the elements of the vortex sheet on the plate and in the trail is 
essentially manifested only in the vicinity of the back edge. The ratio A2/A l affects es- 
pecially strongly the accuracy of the calculation of the intensity of the vortex trail shed 
from the plate, which is determined by F n. For this reason it is interesting to clarify the 
effect of A2/A ~ on the dependence of F n on the time t. The corresponding results are shown 

in Fig. 4. They show that the calculation by the standard scheme of the method of discrete 
vortices in the case A 2 ~ A I can lead to a large error in the calculation of the amplitude 
of the discrete vortex Fn; for A2/A I = 0.2, for example, this error reaches 45%. 

We shall now determine what the proposed computational scheme, in which the last control 
point is chosen taking into account the effect of the parameter A2/Al, gives, using the solu- 
tion of Eq. (i). We determine the coefficient Vn (~n = vl (I)) from the formula 

/0 ,914 + 0.036 + 0.1t62 - -  0,056 ~, 0 < 6 ~< 0.5, 
v,~ = [0.9 + 0 . t6 ,  0 . 5 <  8~< 1, - 

(3) 

which approximates the solution of Eq. 

assume that the remaining coefficients 
scheme. 

We performed the calculation for 
0.5, and i. The results for all 6 < 1 
6 = i. In other words, by changing the 
the plate according to the formula (3) 

(i) for ~I(I) with DI = 0.5, presented in Fig. 2. We 

vl, ..., ~n-1 are equal to unity, as in the standard 

the same values of the parameters, including ~ = 0.2, 
were practically identical to the data obtained for 
position of the control point at the last element of 
the same computational accuracy as achieved with A 2 = 

A I can be preserved for A 2 ~ A I. Thus the proposed computational scheme permits varying the 
time step At over wide limits without lowering the accuracy of the calculation in problems of 
nonstationary, nondetached, and detached flow around profiles. 
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VORTEX-FREE PROPULSION IN AN IDEAL FLUID 

R. M. Garipov UDC 523.582 

A formula for the velocity of a sphere is derived. The sphere is propelled in an ideal 
incompressible fluid from a state of rest by the fixed normal component of the velocity of 
the fluid at the permeable surface of the sphere. The fluid flow is a potential flow. 

Within the framework of potential flows of an ideal incompressible fluid propulsion 
(self-propulsion) of bodies from a state of rest is possible owing to a periodic change in 
shape even though there is no propulsion force [i, 2]. V. L. Sennitski{ [3] and V. V. 
Pukhnachev [4] studied propulsion in a viscous fluid due to the fixed velocity of the fluid 
on the surface of the body, which was assumed to be permeable. For a sphere the optimal 
flows, in the sense of V. V. Pukhnachev, turned out to be potential flow. The ideal formula- 
tion of this problem is of interest. In this case the solution can be obtained simply, but 
the answer is nontrivial. In this connection there arises the following difficult question 
(which is not studied here): do close solutions exist in a fluid with low viscosity? 

Let the sphere S with the radius i (all variables are dimensionless) be propelled from 
a state of rest in an ideal fluid, whose density is equal to I, along the x-axis by the nor- 
mal velocity of the fluid v n (relative to S), which is a function of time t, given on S. 
Then the velocity potential of absolute motion ~ satisfies the boundary condition 

s = v~ + x o cos  0 = c~pk (cos  O) + x o cos  O, 
h=O 

where Pk(X) are Legendre polynomials and P1(x) = x (the flow is axisymmetric) (see Fig. i); 
x 0 is the velocity of the center of the sphere. We shall calculate the kinetic energy of 
the fluid 

Tf=~ IV(p d x = ~ k ~ q - T ( c 1 4 -  Xo) ~ 
outside s k~-1 

( i)  

Let P be the total momentum inside S. We transform the equation of motion into Lagrange's 
form and integrate once P JcOTf/Oxo = const = 0. Substituting here the expression (i) we 
obtain 

p + ( 2 ~ / 3 ) ( { o  + cO = o,  (2) 

whence it is obvious that the regime is optimal for c k = 0 (k ~ i). 
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